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Summary  
In ADNI2, diffusion-weighted MRI (dMRI) data were acquired with one acquisition protocol from 
approximately one third of enrolled participants at the subset of sites with General Electric (GE) 
scanners; in its third phase, ADNI3 has incorporated numerous new dMRI protocols for Siemens, 
Philips, and GE scanners to allow dMRI data collection at all sites 
(http://adni.loni.usc.edu/methods/documents/mri-protocols/). We have updated our dMRI 
preprocessing methods – that reduce common sources of noise and artifacts—to accommodate both 
the updated ADNI acquisition protocols and more recent advances in available tools. We compute 
four standard diffusion tensor imaging (DTI)1 measures including fractional anisotropy (FA) and 
mean, radial, and axial diffusivity (MD, RD, AxD) from corrected dMRI images. Mean DTI 
measures are then extracted from 73 white matter (WM) regions of interest (ROIs) from the John 
Hopkins University (JHU) WM atlas. 

Methods 
Preprocessing steps 
 
Raw dMRI data were first denoised with PCA-based algorithms2 using DiPy3. For the data that had 
the original acquisition matrix (i.e., Siemens and Philips protocols), principal components were 
classified via the Marchenko-Pastur distribution of the eigenvalue spectrum (i.e., MP-PCA)4, 5. 
dMRI data that were zero-padded in k-space (i.e., GE protocols where data were zero-padded to 
256 x 256 matricesa) principal components were classified based on the local variance of the image 
Rician noise distribution (i.e., LPCA)2. Denoised dMRI were then corrected for Gibbs ringing with 
MRtrix6, 7, extra-cerebral tissue was removed using FSL’s bet, and eddy correction performed using 
FSL’s eddy_cuda tool8 with repol outlier estimation and replacement9 and slice-to-volume 
correction10. dMRI then underwent ANTs N4 B1 field inhomogeneity corrections11. 
 
Raw T1-weighted (T1w) images, masked with HD-BET12, were preprocessed using the standard 
FreeSurfer pipeline13 and linearly aligned to the MNI-ICBM52 T1w template. dMRI b0 images were 
then linearly aligned to resulting T1w images with FSL’s flirt boundary-based registration (BBR)14, 
using respective FreeSurfer derived WM masks. The dMRI data were not acquired with opposing 
phase-encoding polarities which are necessary to correct echo-planar imaging (EPI) induced 
susceptibility artifacts with tools like FSL’s topup. Instead, ANTs15, 16 three-channel non-linear 
registration was used to warp each participant’s dMRI to their respective T1w; DTI FA, MD, and 

 
a Raw zero-padded GE scans have 0.9x0.9x2.0 mm3 voxel dimensions rather than 2x2x2 mm3  
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mean b0 equally drove registrations to T1w images. The linear and non-linear registrations were 
concatenated and inverted; the resulting deformations were then applied to all unregistered dMRI 
volumes to both correct images for susceptibility-induced distortions and bring them back to their 
native space with only 1 interpolation. The distortion corrected dMRI were then run through FSL’s 
fast bias field inhomogeneity correction17 using MRtrix’s dwibiascorrection wrapper. 
 
DTI FA, MD, RD, and AxD scalar maps1 were estimated from corrected data with FSL’s dtifit 
using weighted least squares. For multi-shell acquisitions, DTI measures were estimated using only 
the subset of b0 and b=1000 s/mm2 DWI volumes.  
 
White matter tract atlas ROI summary measures 
 
The JHU ICBM-DTI-81 atlas FA map was warped to each participant’s FA with ANTs13 and the 
transformations applied to the stereotaxic WM atlas labels18 
(http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/file/AtlasExplanation2.htm) using nearest 
neighbor interpolation. For each participant, the mest iterative M-estimator from the ‘WRS2’ 
package19 in R (https://cran.r-project.org/web/packages/WRS2/index.html) was used to calculate a 
robust mean of FA, MD, RD, and AxD values within 73 WM ROIs (Table 1). For each ROI, the 
standard mean is also provided. 
 
Dataset Information 
 
This methods document applies to the following dataset(s) available from the ADNI repository: 
Dataset Table Name Method 
USC - DTI ROI Summary Measures v2 (Mean) Mean across ROI voxels 
USC - DTI ROI Summary Measures v2 (Robust Mean) Robust mean across ROI voxels  
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Table 1. Index of JHU WM atlas labels  

ROI Hemisphere Notes: 
Superior cerebellar peduncle left, right, average *check FOV 
Inferior cerebellar peduncle left, right, average *check FOV 
Middle cerebellar peduncle  *check FOV 
Pontine crossing tract  a part of MCP, *check FOV 
Medial lemniscus left, right, average *check FOV 
Cerebral peduncle left, right, average *check FOV 
Corticospinal tract  left, right, average  
Anterior limb of internal capsule left, right, average  
Posterior limb of internal capsule left, right, average  
Retrolenticular part of internal capsule left, right, average  
Anterior corona radiata left, right, average  
Superior corona radiata left, right, average  
Posterior corona radiata left, right, average  
Cingulum  left, right, average cingulate gyrus 
Cingulum (hippocampus)  left, right, average  
Fornix (cres) / Stria terminalis  left, right, average cannot be resolved with current resolution 
Superior longitudinal fasciculus left, right, average  
Superior fronto-occipital fasciculus  left, right, average could be a part of anterior internal capsule 
Sagittal stratum  left, right, average includes inferior longitudinal fasciculus and 

inferior fronto-occipital fasciculus 
External capsule  left, right, average  
Uncinate fasciculus left, right, average  
Posterior thalamic radiation  left, right, average includes optic radiation 
Tapetum  left, right, average  
Fornix   column and body of fornix 
Genu of corpus callosum   
Body of corpus callosum    
Splenium of corpus callosum   
Full internal capsule   
Full corpus callosum   
Full corona radiata   
Full white matter  includes all ROIs 

* Warning: DWI may have a cropped field of view (FOV) and reported means may not capture the full ROIs; these 
regions are also frequently subject to motion and artifact and may be less reliable 
 
Notice: This document is presented by the author(s) as a service to ADNI data users. However, users should be aware 
that no formal review process has vetted this document and that ADNI cannot guarantee the accuracy or utility of this 
document. 
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